

АКЦИОНЕРНОЕ ОБЩЕСТВО «УРАЛО-СИБИРСКАЯ ТЕПЛОЭНЕРГЕТИЧЕСКАЯ КОМПАНИЯ - ЧЕЛЯБИНСК»

УТВЕРЖДАЮ:
Генераньный директор
АО «УСТЭК Челябинск»

И.Н. Рындин
«24» 06 2021 г.

Инструкция

по расчету величины потерь теплоносителя и тепловой энергии с аварийными утечками, через уплотнения сетевой арматуры и технологическими потерями (опрессовка, испытание)
И-002-2021

Введена в действие с « <u>Э</u> Ч» июня 2021 г.		
Статус экземпляра	№ 1	

Содержание

1	Область применения	3
2	Нормативные ссылки	3
3	Термины и определения	3
4	Обозначения и сокращения	4
5 геплово	Расчет величины потерь теплоносителя с аварийной утечкой при повреждениях на й сети и с утечкой через уплотнения сетевой арматуры	4
б в том чі	Расчет величины утечки теплоносителя при опорожнении и заполнении трубопровода исле технологических потерь при опрессовках и испытаниях	
7 геплово	Расчет величины потерь тепловой энергии с аварийной утечкой при повреждениях на й сети и с утечкой через уплотнения сетевой арматуры	
8 грубопр	Определение величины потерь тепловой энергии при опорожнении и заполнении оовода, в том числе технологических потерь при опрессовках и испытаниях	7
утечкам	кение А_Форма расчета потерь теплоносителя и тепловой энергии с аварийными, через уплотнения сетевой арматуры и технологическими потерями (опрессовка	ı,
Лист оз	накомления	9
Лист из	менений1	0

1 Область применения

Настоящая инструкция устанавливает способы расчета величины потерь теплоносителя и тепловой энергии с аварийными утечками, через уплотнения сетевой арматуры и технологическими потерями (опрессовка, испытание). (Изменённая редакция, Изм. № 3)

Результаты расчета, выполненного на основании настоящей инструкции, используются при расчетном распределении потерь тепловой энергии, теплоносителя, а также количества тепловой энергии, теплоносителя, передаваемых между тепловыми сетями теплоснабжающих организаций и теплосетевых организаций при отсутствии приборов учета на границах смежных частей тепловых сетей.

Владельцем данного документа является ПТО, который несет ответственность за:

- сбор и анализ замечаний и предложений по документу и их учету при подготовкеновой редакции документа;
 - пересмотр и актуализацию документа по мере необходимости.

Знать и руководствоваться настоящей инструкцией обязаны:

- персонал эксплуатационных районов и ОДС;
- персонал ПТО;
- персонал службы тепловой инспекции агента по теплосбытовой деятельности;
- персонал службы сбыта агента по теплосбытовой деятельности.

2 Нормативные ссылки

В настоящей инструкции использованы ссылки на следующие нормативные документы: Правила коммерческого учета тепловой энергии, теплоносителя, утверждены Постановлением Правительства РФ от 18.11.2013 N 1034;

Методика осуществления коммерческого учета тепловой энергии, теплоносителя, утверждена Приказом Минстроя России от 17.03.2014 N 99/пр;

Методические указания по расчету потерь горячей, питьевой, технической воды в централизованных системах водоснабжения при ее производстве и транспортировке, утверждены Приказом Минстроя России от 17.10.2014 N 640/пр;

Методические указания по расчету объема принятых (отведенных) сточных вод с использованием метода учета пропускной способности канализационных сетей, утверждены Приказом Минстроя России от $17.10.2014 \ N \ 641/пр$;

Правила организации коммерческого учета воды, сточных вод, утверждены Постановлением Правительства РФ от 04.09.2013 N 776;

Порядок определения нормативов технологических потерь при передаче тепловой энергии, теплоносителя, утвержден Приказом Минэнерго России от 30.12.2008 N 325.

3 Термины и определения

В настоящей инструкции применяются термины и определения в соответствии с таблицей 1.

Таблица 1 – Термины и определения (Изменённая редакция, Изм. № 4)

Термин	Определение потери теплоносителя из технологического оборудования, трубопроводов и теплопотребляющих установок при их повреждении		
Аварийная утечка			
Акт выявления аварийной утечки	документ, фиксирующий выявление аварийной утечки		
Акт устранения аварийной утечки	документ, фиксирующий устранение аварийной утечки		
Напор	давление теплоносителя, выражаемое высотой столба жидкости		
Площадь сечения повреждения	площадь поперечного сечения потока теплоносителя из		

И-002-2021	Версия 1	Стр. 3 из 10		
Инструкция по расчету величины потерь теплоносителя и тепловой энергии с				
аварийными утечками, через уплотнения сетевой арматуры и технологическими				

потерями (опрессовка, испытание)

(площадь живого сечения отверстия)	повреждения (отверстия)
Свищевое повреждение	дефект трубопровода в виде сквозного отверстия в стенке трубопровода
Теплоноситель	вода, которая используется для передачи тепловой энергии

Термины и определения, используемые в настоящей инструкции и не приведенные в таблице 1, используются согласно терминам и определениям действующего законодательства в сфере теплоснабжения.

4 Обозначения и сокращения

В настоящей инструкции использованы обозначения и сокращения в соответствии с таблицей 2.

Таблица 2 – Обозначения и сокращения (Изменённая редакция, Изм. № 4)

Сокращение	Расшифровка	
Агент по теплосбытовой деятельности	ООО «Уралэнергосбыт»	
Акт выявления	Акт выявления аварийной утечки	
Акт устранения	Акт устранения аварийной утечки	
ОДС	оперативно-диспетчерская служба АО «УСТЭК- Челябинск»	
ПТО	производственно-технический отдел АО «УСТЭК- Челябинск»	

5 Расчет величины потерь теплоносителя с аварийной утечкой при повреждениях на тепловой сети и с утечкой через уплотнения сетевой арматуры (Изменённая редакция, Изм. № 4)

Определение величины потерь теплоносителя при повреждениях на тепловой сети при возможности измерения размеров повреждения в порядке п. 6.7.3, 7.5.2, 7.5.4 Регламента Р-001-2022, осуществляется по следующей формуле:

$$G_{\rm yr} = 9600 \cdot T \cdot w \cdot \sqrt{H} \tag{1}$$

(Приказ Минстроя России №640/пр от 17.10.2014 г. Приложение №5 формула 2.1.1.)

 G_{VI} – объем потерь теплоносителя при утечке (п.3.6 Приложения A), м³;

- T продолжительность утечки с момента обнаружения утечки до отключения поврежденного участка или заделки отверстия трубопровода, рассчитывается как разница между временем устранения утечки согласно акту устранения, и временем обнаружения утечки согласно акту выявления (п.3.4 Приложения A), час;
- w площадь сечения повреждения, рассчитывается исходя из геометрических размеров повреждения, зафиксированных актом устранения (п.3.5 Приложения A), M^2 .

Определение величины потерь теплоносителя при невозможности измерения размеров повреждения и площади живого сечения отверстия в соответствии с п. 7.5.1 - 7.5.4 Регламента P-001-2022 осуществляется в зависимости от типа повреждения по следующим формулам:

1. При свищевом повреждении

$$G_{\rm yr} = 1.92 \cdot T \cdot \sqrt{H} \tag{1.1}$$

(Приказ Минстроя России №640/пр от 17.10.2014 г. Приложение №5 формула 2.1.1.1)

T - продолжительность утечки с момента обнаружения утечки до отключения поврежденного участка или заделки отверстия трубопровода, рассчитывается как разница между временем устранения утечки согласно акту устранения, и временем обнаружения утечки согласно акту выявления (п.3.4 Приложения A), час;

И-002-2021	Версия 1	Стр. 4 из 10	
Инструкция по расчету величины потерь теплоносителя и тепловой энергии с			
аварийными утечками, через уплотнения сетевой арматуры и технологическими			
потерями (опрессовка, испытание)			

- H средний напор теплоносителя, рассчитывается как средняя величина напора теплоносителя в трубопроводе на поврежденном участке за время продолжительности утечки (п.3.3 Приложения A), м.
 - 2. При трещинах в трубопроводе тепловой сети:

$$G_{\text{VT}} = 374.4 \cdot d^2_{\text{BH}} \cdot T \cdot \sqrt{H} \tag{1.2}$$

(Приказ Минстроя России №640/пр от 17.10.2014 г. Приложение №5 формула 2.1.1.2) $d_{\text{вн}}$ — внутренний диаметр поврежденной трубы, зафиксированный актом устранения (п.1.7 Приложения A), м.

3. При переломах и разрывах трубопроводов тепловой сети:

$$G_{\rm VT} = 5652 \cdot d^2_{\rm BH} \cdot T \cdot \sqrt{H} \tag{1.3}$$

(Приказ Минстроя России №640/пр от 17.10.2014 г. Приложение №5 формула 2.1.1.3) $d_{\text{вн}}$ — внутренний диаметр поврежденной трубы, зафиксированный актом устранения (п.1.7 Приложения A), м.

При невозможности достоверно определить тип повреждения (свищ, трещина, перелом и разрыв) для расчета потерь теплоносителя используется формула 1.1 настоящей Инструкции исходя из опыта эксплуатации.

Расчет среднего напора теплоносителя для всех приведенных выше формул рассчитывается по формулам (2, 3):

H - средний напор теплоносителя, рассчитывается как средняя величина напора теплоносителя в трубопроводе на поврежденном участке за время продолжительности утечки (п.3.3 Приложения A), м.

Расчет среднего напора теплоносителя при повреждении на подающем трубопроводе:

$$H = \frac{(P_{1B} + P_{1y})}{2} \cdot 10 \tag{2}$$

 $P_{1\mathrm{B}}$ — давление теплоносителя в подающем трубопроводе на момент выявления утечки из тепловой сети, принимается по архивным показаниям приборов коммерческого учета, ближайших к месту повреждения (на источнике тепловой энергии, у потребителя, на границе смежных тепловых сетей) (п.2.7 Приложения A), кгс/см²;

 P_{1y} - давление теплоносителя в подающем трубопроводе на момент устранения утечки из тепловой сети, принимается по архивным показаниям приборов коммерческого учета, ближайших к месту повреждения (на источнике тепловой энергии, у потребителя, на границе смежных тепловых сетей) (п.2.9 Приложения A), кгс/см².

Расчет среднего напора теплоносителя при повреждении на обратном трубопроводе (Изменённая редакция, Изм. № 1):

$$H = \frac{(P_{2B} + P_{2y})}{2} \cdot 10 \tag{3}$$

 $P_{\rm 2B}$ - давление теплоносителя в обратном трубопроводе на момент выявления утечки из тепловой сети, принимается по архивным показаниям приборов коммерческого учета, ближайших к месту повреждения (на источнике тепловой энергии, у потребителя, на границе смежных тепловых сетей) (п.2.8 Приложения A), кгс/см²;

 P_{2y} - давление теплоносителя в обратном трубопроводе на момент устранения утечки из тепловой сети, принимается по архивным показаниям приборов коммерческого учета, ближайших к месту повреждения (на источнике тепловой энергии, у потребителя, на границе смежных тепловых сетей) (п.2.10 Приложения A), кгс/см².

Определение величины потерь теплоносителя через уплотнения сетевой арматуры (п.3.6 Приложения A):

И-002-2021	Версия 1	Стр. 5 из 10		
Инструкция по расчету величины потерь теплоносителя и тепловой энергии с				
аварийными утечками, через уплотнения сетевой арматуры и технологическими				
поте	оями (опрессовка, испытание)			

$$G_{\rm yr} = \sigma \cdot n \cdot \frac{q}{24} \cdot T \tag{4}$$

(Приказ Минстроя России №640/пр от 17.10.2014 г. Приложение №5 формула 2.1.2.)

- σ доля арматуры, имеющей утечки, в связи с проведением расчета по фактическим утечкам, зафиксированным актами, принимается равной 1;
- n- общее количество сетевой арматуры, имеющей утечки, зафиксированное актом устранения, ед.;
- q- средний расход при утечке через уплотнения сетевой арматуры, при отсутствии данных принимать равным 4,3 м 3 /сутки на 1 ед. сетевой арматуры, м 3 /сут.;
- T- продолжительность утечки с момента обнаружения утечки до отключения поврежденного участка или устранения течи через уплотнение, рассчитывается как разница между временем устранения утечки, согласно акту устранения, и временем обнаружения утечки, согласно акту выявления, час.

6 Расчет величины утечки теплоносителя при опорожнении и заполнении трубопровода, в том числе технологических потерь при опрессовках и испытаниях

$$G_{\text{on}} = 0.785 \cdot d^2_{\text{BH}} \cdot L \tag{5}$$

(Приказ Минстроя России №640/пр от 17.10.2014 г. Приложение №5 формула 1.2.)

 $G_{\text{оп}}$ – объем потерь теплоносителя при опорожнении трубопровода (п.3.7 Приложения A), м³;

 $d_{\text{вн}}$ — внутренний диаметр поврежденной трубы, зафиксированный актом устранения (п.1.7 Приложения A), м;

L – длина опорожняемого участка в однотрубном исчислении (п.1.8 Приложения A), зафиксированная актом устранения, м.

7 Расчет величины потерь тепловой энергии с аварийной утечкой при повреждениях на тепловой сети и с утечкой через уплотнения сетевой арматуры

Определение величины потерь тепловой энергии при повреждении на подающем трубопроводе:

$$Q_{\rm VT} = G_{\rm VT} \cdot \rho \cdot c \cdot (t_1 - t_{\rm XM}) / 10^6 \tag{6}$$

Определение величины потерь тепловой энергии при повреждении на обратном трубопроводе:

$$Q_{\rm yT} = G_{\rm yT} \cdot \rho \cdot c \cdot (t_2 - t_{\rm XM}) / 10^6 \tag{7}$$

 Q_{ym} —потери тепловой энергии, обусловленные потерями теплоносителя при утечке (п.3.10 Приложения A), Гкал;

 G_{ym} – объем потерь теплоносителя при утечке, м³;

- c удельная теплоемкость теплоносителя, принимается равной 1 ккал/кг °C (п.2.11 Приложения A);
- t_1 температура теплоносителя в подающем трубопроводе, рассчитывается как средняя величина температуры теплоносителя в подающем трубопроводе на поврежденном участке за время продолжительности утечки (п.3.1 Приложения A), °C;
- t_2 температура теплоносителя в обратном трубопроводе, рассчитывается как средняя величина температуры теплоносителя в обратном трубопроводе на поврежденном участке за время продолжительности утечки (п.3.2 Приложения A), °C;

Расчет средней температуры теплоносителя в подающем трубопроводе:

$$t_1 = \frac{t_{1B} + t_{1y}}{2} \tag{8}$$

 $t_{1 \text{в}}$ – температура теплоносителя в подающем трубопроводе на момент выявления утечки

И-002-2021	Версия 1	Стр. 6 из 10	
Инструкция по расчету величины потерь теплоносителя и тепловой энергии с			
аварийными утечками, через уплотнения сетевой арматуры и технологическими			
потерями (опрессовка, испытание)			

из тепловой сети, принимается по архивным показаниям приборов коммерческого учета, ближайших к месту повреждения (на источнике тепловой энергии, у потребителя, на границе смежных тепловых сетей) (п.2.1 Приложения A), °C;

 t_{1y} - температура теплоносителя в подающем трубопроводе на момент устранения утечки из тепловой сети, принимается по архивным показаниям приборов коммерческого учета, ближайших к месту повреждения (на источнике тепловой энергии, у потребителя, на границе смежных тепловых сетей) (п.2.3 Приложения A), °C.

Расчет средней температуры теплоносителя в обратном трубопроводе:

$$t_2 = \frac{t_{2B} + t_{2y}}{2} \tag{9}$$

 $t_{\rm 2B}$ — температура теплоносителя в обратном трубопроводе на момент выявления утечки из тепловой сети, принимается по архивным показаниям приборов коммерческого учета, ближайших к месту повреждения (на источнике тепловой энергии, у потребителя, на границе смежных тепловых сетей) (п.2.2 Приложения A), °C;

 t_{2y} - температура теплоносителя в обратном трубопроводе на момент устранения утечки из тепловой сети, принимается по архивным показаниям приборов коммерческого учета, ближайших к месту повреждения (на источнике тепловой энергии, у потребителя, на границе смежных тепловых сетей) (п.2.4 Приложения A), °C.

 $t_{\rm xu}$ — температура исходной воды, подаваемой на источник теплоснабжения и используемой для подпитки тепловой сети, принимается равной 5 °C в отопительный период и 15 °C в межотопительный период, согласно п.11.1.1. Приказа Минэнерго России №325 от 30.12.2008 г. (п.2.6 Приложения A), °C.

 ρ – плотность теплоносителя, кг/м³ рассчитывается по формуле (п. 3.8 Приложения А): при повреждении на подающем трубопроводе:

 $\rho = 1002,6107 + (-0,10839402)*t_1 + (-0,0038261802)*t_1^2 + (0,0000051005834)*t_1^3$ (10) при повреждении на обратном трубопроводе:

$$\rho = 1002,6107 + (-0,10839402) * t_2 + (-0,0038261802) * t_2^2 + (0,0000051005834) * t_2^3 (11)$$

8 Определение величины потерь тепловой энергии при опорожнении и заполнении трубопровода, в том числе технологических потерь при опрессовках и испытаниях

Определение величины потерь тепловой энергии при опорожнении трубопровода:

$$Q_{\text{on}} = G_{\text{on}} \cdot \rho \cdot c \cdot (t_{2\text{on}} - t_{xH})/10^6 \tag{12}$$

 Q_{on} —потери тепловой энергии, обусловленные опорожнением трубопровода (п.3.11 Приложения A), Гкал;

 G_{on} – объем потерь теплоносителя при опорожнении, м³;

c – удельная теплоемкость теплоносителя, принимается равной 1 ккал/кг °C;

 $t_{2\text{оп}}$ - температура теплоносителя в обратном трубопроводе на момент заполнения поврежденного трубопровода, принимается по архивным показаниям приборов коммерческого учета, ближайших к месту повреждения (на источнике тепловой энергии, у потребителя, на границе смежных тепловых сетей) (п.2.5 Приложения A), °C.

 $t_{\rm xu}$ — температура исходной воды, подаваемой на источник теплоснабжения и используемой для подпитки тепловой сети, принимается равной 5 °C в отопительный период и 15 °C в межотопительный период, согласно п.11.1.1. Приказа Минэнерго России №325 от 30.12.2008 г. (п.2.6 Приложения A), °C;

 ρ – плотность теплоносителя, кг/м³ рассчитывается по формуле (п. 3.9 Приложения A): $\rho = 1002,6107 + (-0,10839402) * t_{20\Pi} + (-0,0038261802) * t_{20\Pi}^2 + (0,0000051005834) * t_{20\Pi}^3$ (13)

И-002-2021 Версия 1 Стр. 7 из 10

Приложение A (обязательное)

Форма расчета потерь теплоносителя и тепловой энергии с аварийными утечками, через уплотнения сетевой арматуры и технологическими потерями (опрессовка, испытание) (Изменённая редакция, Изм. № 4)

И-002-2021 Версия 1 Стр. 8 из 10

Лист ознакомления

№ п/п	Должность	ФИО	Дата	Подпись
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

И-002-2021	Версия 1	Стр. 9 из 10	
Инструкция по расчету величины потерь теплоносителя и тепловой энергии с			
явярийными утечкями, через уплотнения сетевой ярмятуры и технологическими			

ыми утечками, через уплотнения сетевой арматуры и технологическим потерями (опрессовка, испытание)

Лист изменений

№ п/п	Основание (№приказа/ рег.№ изменения)	Автор изменения	Дата внесения изменений в документ	Подпись лица, внесшего изменение
1	1 от 05.07.2021	М.Д. Кривкова	05.07.2021	Менеджер по СМК М.А. Коровникова
2	9 от 30.05.2022	Е.С. Мелёхина	30.05.2022	Менеджер по СМК М.А. Коровникова
3	10 от 30.06.2022	Е.С. Мелёхина	29.06.2022	Менеджер по СМК М.А. Коровникова
4	28 от 28.07.2023	М.Д. Курчавова	28.07.2023	Менеджер по СМК М.А. Коровникова
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

И-002-2021	Версия 1	Стр. 10 из 10
Инструкция по расчету величины потерь теплоносителя и тепловой энергии с		